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ABSMRCT

motion of a body B in 2-D or 3-D space, so as to avoid collision with moving obs-

tacles of known, easily computed, trajectories. Dynamic movement problems
are of fundamental importance to robotics, bat their computationa! complexity
has not previously been investigated.

We provide evidence that the 3-D dynamic movement problem is intractable
even if B has only a constant number of degrees of freedom of movement. In
particular, we prove the problem is P5SPACE-hard if B is giv.en a velo.iLv

modulus bound on its movements and is SP hard even if B has no velocity
modulus bound, where in both cases B has 6 degrees of freedom. To prove
LJ.J.EO C 'a'e9 I.'170 %1 1 .,A. Un.11C ,ý t~ CLI.% S./L 3.A4'U.!1.s'da., -*4~1 .4 a49 Ttzing

uses time to encode conftgurations (whereas previous lower bound proofs in
robotics used the system position to encode configurations and so required
unbounded number of degrees of freedom). J.

We also investigate a natural class of dynamic problems which we call
asteroid avoidance problems B, the object we wish to move, is a convex
polyhedron which is free to move by translation with bounded velocity modulus.
and the polyhedral obstacles have known translational trajectories but cannot
rotate. This problem has many applications to robot, automobile, and aircraft
collision avoidance. Our main positive results are polynomial time algorithms
for the 2-D asterd-o veoidance problem "ith bounded nurnbef off ubstacies as
well as single exponeiai time and n7 ( ogn) space algorithms for the 3-D 'z
asteroid avoidance probl with an unbounded number of obstacles. Our tech-
niques for solving these ast oid avoidance problems are novel in the sense that
they are completely urrelated•..o previous algorithms for planning movement in
the case of static obstacles.

We also give some additional positive results for various other dynamic
movers problems, and in particular give polynomial time algorithms for the case
in which B has no velocity bounds and the movements of obstacles are alge-,
braic in space-time.
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ABSTRACT
This paper investigates the computational complexity of planning the

motion of a body B in 2-D or .3-D space, so as to avoid collision with moving obs-
tacles of known, eas:ily computed. trajectories Dynamic movement problems
are of fundamental importance to robotics, but their computational complexity
has not previously been investigated.

We provide evidence that the 3-D dynamic movement problem is intractable
even if B has onix' a constant number of degrees of freedom of movement. In
particular, we prove the problem is PSPACE-hard if B is given a vecl.sitv
modulus bound on its- movemnents and is NP hard even if B has no velocity
modulus bound. where in both case-s B has 6 degrees of freedom. To prove

`-Be 2'.UŽ ~ '.~L L ~.jA. rcssd~ ýLflL.' C,' :;-.uL±~~ la~ttin 1 T- in rmA~,Lchin

uses time to encode con~iuration s ',whereas previous lower bound proofs in
robotics used the systemn position t-- encode configurations and so required
-unbounded number of degrees of freedom).

We al-so investigate a natural class of dynamic problems which we call
asteroi-d avoidance probleras B, the ob,~ect we wish to move, is a convex
polyhedron which is free to move by translation with bounded velocity modulus
and the polyhedral obstacles have kriovn translational trajectories but cannot
rotate. This problem has many applications to robot. autumobile, and aircraft.
collision avoidance Our main. pos~tive results are polynomial time algorithms
for the 2?-D asteroid avoidance problem with bounded number of obstacles ac.
well as single expone-ntial time and -n~ogi ?&) space algorithms for the 3-r
asteroid avoidanre prclbiemn with an uribuunded niumbecr of obstacles. Our tech-
niques for solving these asteroid avo~dance problems are novel in the sense that
they are completely ui-related to prcv~ous algorithms for planning movement in
the casc of -static obstacles

We also give some additional positive results for various other dynanuc
movers problerns, and in particular g,.ve polynomial time algorithms for th case
in which Y has no velocity boundsz and the movements of obstacles are alge.
braic in space-time

1. INTRODUCTION

1.1 Static M~overs Problems
The static m~oitrs proble?, is to plan a collision-free motion of a body R in.

?-D or 3-D space avoidiri:; a set tif obstacles stationary in space. Foi- example. F.
may be a sofa %;hic h we % ish to move through a room crowded with furniture, or
B may be an. articul-ated robot arm mhich we wish to move in a fixed workspace

'Rrti. 791 first -Sh-'N. d -,hat ai generalized 3-D static movers problem is
PS"PACIi -hard. xherc: B cri'sn n Lriked polyhedra. l-iopcr-.ft, Joseph an"-
Whitesides. 6-1 and H--,przt ShLart nd Sharir, 843] later proved ESP CE-

lower bounds for 2-D s*;,.,, movers problems. If the number of degrees of free-
dom of motion is keptc cnzt ant then thc problem has polyiiomial-time solutionsC
provided that the gt.:cmtc-ric corostraritAs on the motion 'can be stated algebra,-
cally -Schwartz anc Shaiir. 63b] N'crc viticient polynomial time algorithrms fo'r
various specific cases of static movers problems are given in 1Lozano-Perez and
Wesley. 79 Reif. 79 Fchw_-irtz and FhUirir. 83a.c, 68'. +Iopcroft, Joseph and Whte--
s'ides 65. Sl-arir and Arie'?heffi. B,,, 0 uunlamng, Sharir and.,Yp. 83. O'Dunlamn,

and Yap. 65]
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12 Dynamic Movers Problems
In this paper, we consider the problem of planning a collision-free motion of

a body B which is free to move within some 2-D or 3-D space S, containing
several obstacles which move in S along known trajectories. We require that the
obstacle trajectories be easily computable functions of time, and not be at all
dependent on any movement of B. Some applications are:

(1) Robotc Collision Avoidance. B might be a robot arm which mu-st be
moved through a workspace such as an assembly line in which various machine
parts make predictable movements.

(9) A,,t•mobie Coleision Avoidance. F is en i.1tnr.f-%hhJi •With an )11tor..atir,

steering system which must avoid collision with other automobiles with known
trajectories on a highway.

(3) Aircraft Collision Avoidance. B Is an aircraft which we wish to
automatic-pilot through an airspace containing a number of aircraft and other
obstacles with known flight paths

(4) Spacecraft Navigation. B/ might be a spacecraft which we wish to

automatically maneuver among a field of moving obstacles, such as asteroids.

Although the dynamic movers problem is fundamental to robotics, we know
of no previous work which has considered the computational complexity of such
problems

We can formally define a dyriamic movers problem as follows. Let B be an
arbitrary fixed system of moing bodies (each of which can translate and rotate-.
and some of which may be hinged), having overall d degrees of freedom B is
allowed to move within a space S which contains a collection of obstacles moving
in an arbitrary (but known) manner. To cope with the tinme-varying environment
we represent the time as an additional parameter of the configuration of B.
More precisely, we define the free configuration space FP of B to consist of all
pairs LX.t] c E(d+'), where X E El represents a configuration of B, and such
that if at time t the system B is at configuration X then B does not meet
any" obstacle aL that time In this representation of FP a continuous motion of

B is represented by a continuous arc [zx.t]p=(t), which is monotone in t
Note that the slope of this arc (relaLive to the . t-axisl) rprcst...thc .ve.loc it'
(ye. the rate of chenge of the parameters of the motion) of B If we impose no
restrictions on this velocity, any such t-monotone path corresponds to a possi-
bit; motion of B. Hov ever. the dynamic version of the problem is usually further
complicated by imposing certain constraints on the allowed motions of B One
such constraint is that the velocity of B has a boumded modulus (the modulus
is the.Euclidean norm of the velocity vector) Such a constraint of a "uniform"
boun± 'on velocity of B is particularly appropriate if B is a single rigid body
free only to translate. most of the versions of the problem (e g the astrc-nd
avoidance problem) studicd in this pap.r w:ll be of 'his k,nd

Using the above terminology, the problem that we wish to solve is Given an
initial free contiguration 'Xc.01 and a final free configuration _X,.7]. plan a con-
Lin::ous :-..tton of B (if one exists) betwueen these coNfigurations which will
aJVe,d colhsýion with the obstacles, or else report that no such motion is possible
'kN,.ote tha.t we also si'ecify the time T at which wc want to be at thL. finlI
cor.figuratuons X1. as will be sgen bd!ow, a variant of our technmques can be used
to obtain minimal time movement of B ) In other words %%e w-sh to find a -nono-
tonc path in FP between the two configu-ations IXc.0i and 7X1.7]. where the
pain satisies t~he velocity modulus bounds constraint ýif .mposed)

The goal of this paper is to systematically investigate the complexity of
various fundamental classes of dynamic movement planning problems
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1.3 Summary of Our Results
In summary, the main results of this paper are.

(1) PSPACE louer bounds of 3-D dynamic movement planning of a single
disk with bounded velocity and rotating obstacles.

(2) decision algorithmns for 1-D, 2.D or 3-D dynamic movement planning of
a polyhedron with bounded velocity and purely translating obstacles.

We also have additional results for some dynamic movement planning prob- -

lems with unbounded veiocrty.

1.4 Our Lower Bound Results for Rotating Obsta-ClUs.
In the case the obstacles rotate, they may generate non-algebra.c trajec-

tories in space-time which appear to make movement planning intractable Our
main negative ,es-ult, given in Section 2, is a proof that 3-D dynamic movement
planning with rotating obstacles is PSPACE-hard. even in the case the object to
be moved is a disc with bounded velocity. (We also have a related AP-hardness
result, described below, in the case B has no velocity bounds )

Remark. All previously known lower bound results for movers problems
utilize the position of B for encoding n bits, and thus require that 3 have

,(\n) degrees of freedom. We use substantially different techniques :or our
lower bound results. In particular, we use time to encode the configuration of a
Turing machine that we wish to simulate (therefore we call our construc tion a

I.;:•m-rnaciune"). In our lowver bound construction ii uiLufes that hawv only
0,:) degrees of freedom (In contrast, static movement planning is polynomlal
time decidable in case B has only O(i) degrees of freedom ) The key to our
PSPAG4E-hardness proof is a "delay box" construction. which by use of rotating
rbstacles generates an exponential number of disconnected cc'mponents in the
free configuration space

1.5 Efficient Algorithms for Asteroid Avoidance Problems
In Section 3 we investigate an interesting class of tractable dynarnic move-

ment problems where the obstacles do not rotate An asteroid avoidance prob-
lerm is the dynamic movement problem where etch of the obstacles is a
polyhedron with a fixed (possibly distinct) translational velociLy aiud dircction.
and B is a convex polyhedron which may make arbitrary translational move-
ments but with a bounded velocity modulus Neither B? nor the obstacles may
rotate. (This problem I-S named after the well known ASTEROID video game
where a spacecraft of limited velocity modulus must be maneuvered to avoid
swiftly moving asteroids.) The problem is efficientlv solved in the -- D case by
1n1? scanning techniques but is quite difficult in the 2-D and 3-D cases

The assumptions of the asteroid avoidance problem are applicable in m.an--
of the above mentioned practical problems. such as robot, automobile, airplane
and spacecraft collision avoidance problems. where both B and the obstacles
are approximated by convex polyhedra

The maporpositive results of this paper are a polynomial time algorithrr for
the 2-D asteroid avoidance problem with a bounded number of convex obstacles
as well as 2' 0(', time and nclbtn) space decision algorithms for the, 3-D
asteroid avoidance problem with .ii unbounded number of obstacles The
methods we develop (,such as the use of normal movements) to solve asteroid
avzidance problenis are quite different from those previously used to solve
static movement problems and seem likely to be fundamental to the efficient
solution of other problems in planning dynamic movement.



We also have a simple polynomial time algorithm for the 3-D~asteroid
avoid&nce problem with an unbounded number of obstacles where B has mna~x-
imum velocity bound greater than any obstacle, and must only avoid collision.

1.6 Dynamic Movers Problems with no Velocity Bounds on B
In the final Section 4 of this paper, we consider the complexity of dynamic

movement planning in the case B, the object to be moved, has no velocity
modulus bounds We first show that the 3D dynamic movement problem for a
cylinder B with unrestricted velocity is NP-hard

We then consider algorithms for dynamic movement planning in the case in
which no velocity bounds are imposed on the motion of B. and the geometric
constraints on the possible positions of B can be specified by algebraic equali-
tLes and inequalities (in the parameters describing the possible degrees of free-
dom of B and in time ). We show that this problem is solvable in polynomial
time for anyfixed moing system B (which may consist of several independent
hinged translating and rotating bodies in 2-D or 3-D).

2. A TIME MACHINE SIMULATION OF PSPACE

We show here that
THEOREM 2.1. Dynamic mnovemrent planning in the case of bounded velocity is
PSPACE-hard, even in the case where the body B to be moved is a disc.

Proof. ilet M be a deterministic Turing machine wi.th space bound
S(n) vO°i) We can assume Al has tapc alphabet i, stt ..
Q =..........Q1-1 with initial state 0 and accepting state 1. A
co-ftIurcttion of Al consists of a tuple C = (u,qh) where u E j0,! sn) is the
current tape contents, q C Q is the current state, and h Ei . S.... is
the position of the tape head. Let next(C) be the configuration immediately
succeeding C. Given input string v. C J0.:1 considered to be a binary number,
the initial configuration is Co = (•0S',n)-n,0, 0 ). We can assume (0s(n),:,O) is the
aceepting configuration. We can also assume that if M accepts, then it does so
in exactly T :-- 21s") steps for some constant c > 0 Thus M, accepts iff CT is
acceptiA-1, where CC 1, .. . C7 is the sequence of ccnfhgurations of .;f satisfy-
Hig C, = next( 0_) for = 1 ...... T

To simulate the computation of Af on input w, we will construct a 3-D
instance of the dynamic movers problem where the body B to be moved is a
disc of radius 1, and where we bound the velocity modulus of B by
v = 100 Q'S(n). Tne basic idea of our simu!ation is to use time to encode the
current configuration of M.

"Let

N = S(n) + alog Q I + [logSn) 1

We shall encode each configuration C 'u.q Ih) as a.i N bit binary number

#'C) =u+ + h2'T0n? Q

so 0- #\C) < 2"'. A surface configuraton of M is a triple <Uh.q h> vhere
Uh C J0.'I is the value of the tape cell currently scanned, q is the current state
aad h is the head position Note that there are only a p-Aynomial number of
surface configurations For each g Q Q. h C - S'n'l- an..i d li, C 10,'( wC
associate a distinguished position P<q.> of B in 3-dimensional space

corresponding to surface configuration <Uh .9 Ah> of .4!
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We will fix a distinguished initial position po of B in 3-dimensional space
B is located at Po at the initial time to = U . The dynamic movers problem will
be to move B so that it is at. position Pc also at time tT = 2s,') + T2v We will
construct a collection of moving obstacles which will forcT H to move to posi-
tion Po exactly at each time t, z w such that tJ = #C, + i and

t% < it,] + - Thus the lower N bits of t . encode the configuration C, arid the

higher bits encode the step number. (Note that :c encodes the initial
configuration, at step 0, and tT encodes the final coifiguration at step T)

To siruilate M. we need two kinds of devices, one to test that M is at a par-
Sticular surface configuration, and the other to s'mulate one step of M at a

specific surface configuration The first kind of device is constructed as follows
To test a given bit bj, in postion j of t,, we require that B be forced 'by a
semnaisc rotating once every time units) to enter a cylindrical box (which

F we call a "Lest box") with two exit slots: ex-i.t0 and exi•,. We design the box so
"I. that it is swept by a semidisc once every -- time units, and furthermore b, =

iff erit1 is open iff erit0 is closed at time +A.where A, is the time
required by B to reach the entry slot of this test box. A semidisc rotating once
every 2) time units can be used to open and closE: these exits at the appropriate

. times Thus we can design the test box so that in tinie units, B is forced to

move through exito

Hence (by using a balanced tree of such tLst boxes plus some additional
sweeping semidiscs), we can force B to be mc-ed from pe to arrive in dis-

K ~nuihe psiio Pu,.q~~in time at least it, I i- -_and less than M -
Let C,÷+ = next(C') = Iu'h') bc the configuration of V irmmediately lollow
ing C, Since #Q,., - #q depends only on <b,q.h>, there is a function
g(u,.q.h) such that V1+1 = Vt + g(uh.g.h) and 'Uh.,h) 20< 2v Hence we
will require an additional gadget. to be described below, to force B to move
from position P<u .h.> back again to position pe at time t, +Isuch that

and t,. 1 ! tj++ L The total time dellay for this move must be
-1. L ý V

Thus our key remaining construction still required is a "delay A box"
I -"- (where A is a number less than 2 -N) If B enters the delay box et any Lime

t ! 0 such that t < [t] + then B must be m,.de t. exit the delay box at a
"V

time at least It] +- A, and al. most It] + A, + -- Note we can assume A is greater

than a constant. say 10, or else the construction is trivial (Our construction is
not trivial, howevc-, in the general case where A is exponential in N s:nce it is
based on an explicit construction of an exponential number of disconnected
components in the free configuration space. using only a small number of mov-
ing (essentially rotating) obstacies having polynomially describable velocities )

Our delay box consist- of a fixed torus-shaped obstacle, plus some addi-
tional moving obstacles (see Figure 1) We cai, precisely define this torus as the
surface generated by the revolution of an (imaginary) circle of radius 3 around
the x axis, so that its center is always at distance -from the z axis, and so

ric fro texai. an so
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that the circle is always coplanar with the x-axis. Let 8 be the angular posi-
tion of a point with respect to rotation around the z-axis.

The torus will have open entrance and exit slots at 0- 0 and 0 =,
respectively, just sufficiently wide for entrance and e:-it of disc B from the
torus. The idea of our delay box construction will be to create various discon-
riected "free spaces" within the torus in which B must be located. These free
spaces will be constructed so that they move within the torus 7r radians of 0
(i.e., make "/2 a revolution) in A time uruts. Once B enters the torus via
the entrance slot, our construction will foite B to be located in exactly one
such free space, and revolve with it around the torus until B leaves the interior
of the torus at the exit slot after the required delay of A time units.

We now show precisely how to create these moving "free spaces". A moving
obstacle D moves through the interior of the torus with angular velocity (with

respect to 0) of 16 + l-revolutions per time unit. D consists of three discs

D0 ,D1 ,D2 placed face to face so that their centers are nearly in contact and so
that they are each coplanar with the x-axis. Discs D0 ,! 1 ,D2 are of radius
almost 3. D0 has a 1/ 4 section removed, DI has a 3/4 section removed, and DZ
has a 1/2 section removed. D , and D2 each rotate around their center, but
D0 does not. Let J' be the angular displacement of D, as it rotates around its
center, for i=-1,2. We set the angular velocity of DI with respect to *1 to be the
same as the angular velocity of D, with respect to 0. We set the angular velo-
city of P,, with respect to *2 to be 32A revolutions per- time umt (see Figure

We assume that when D has angular displacement 0- -•- D, :s pos0-
2 '

tioned so that the remaining solid quarter section of D, completely overlaps the
removed q,,arter section of Do This creates an immobile "dead space" at

n =2 every roughly -L-time units. wlhch B cannot cross 'because its velo-

city is too small), and will force B (if it is to avoid collision) to exit the torus vi1the exit slot at 0 = 7r. However, while D has angular displacement 0.
0 8 !- n, the removed 3/4 section of DI completely overlaps the rern:ved

quarter section of Do which thereiore remains completely unobscured (see Fig-
ure 3).

Observe that for 0 - 0 - 1T a "free space" is created during about V/
revolution of D2 around its center (i e. when the removed quarter section of Do
and the removed half-secton of ,. ,nil',ripntly nuer!_4. to A---4mfC B

between them), and B can be located in this fcee space without contacting an
obstacle On the next roughly 1/ 2 revolution of P22 around its center, a "dead
4sace" is created (i.e., when the removed sections of discs D0 , D2 dc not
sufficiently overlap), and B cannot be located in this dead space Since D2
rotates around its center at most 2A times eve-y tine interval in which I)
rotates through the torus, at most 26 such free spaces are created during one
revolution of D around the torus 'see Figure 4).

1
Since D makes an integal number plus - revolutions vf 0 every time

unit, each free space moves ý- revolutions of A e, -ry time unit, and thus

each free space moves 1/ 2 a revolution of 0 in A tirxw units as required in
our construction. Moreover we have chosen the size of the torus and A 10, so
that it is easy to verify that the riaximum velocity v of B is s4flicient for B
to enter the torus, to move along within a free spare anG to finally exit the torus.

Finally, we claim that B cannot move between any two distinct free spaces
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while in the interior of the torus If this was possible. then B could move
across a dead space without colliding with D. But D makes a revolution of 0

at least every L- time units In this time. B 'which has maximum velocity
16

v) can move at most distance - which is less than the minimum distance

SAu v= L:between any two free spaces. a contradiction
6 21r 2

Finally, to complete cut construction, we observe that it is easy (by use of a
binary tree of cylindrical tube obstacles and sweeping senridiscs) to force B to
move from the exit of each such torus to pc, so that the overall delay in reach-
ing P0 is A. as required. A description of the above construction can easily be
computed by an O(log n) space bounded deterministic Turing Vachine. 0

Remark: This "time-machine" constiuction can be simplified further, to the
case involving dynamic movement planning in 2-D space in the presence of a s.n-

S.gle moving obstacle which is a single point Giving this obstacle a rather irregu-
lar (but still polynomially describable) motion, w.e can simulate both testing dev-
ices and delay devices and any additional obstacles needed to force B to move
from and back to the starting position pc Nevertheless, we prefer thE construc-

iton given here since it uses more '-atural and regular kinds of motion (We are
grateful to Jack Schwartz for mat:ing this observation.)

'3. K M-_ I.NT AJORITHMS f'OR THE ASYEROID AVOIDANCE PROBLEM

Our PSPACE-hardness result of the previous section indicates that it may
Sbe inherently ddfcult to s'lve &,.-namic movers problems where the obstacles
rotate Therefore we confine our attention to the following case, which we call
the asteroid avoidance problemr

Assume that B is an arbtitrary convex polyhedron in 1-space which can
move only by translating with maximum velocity modulus v but withouL rotat-
ing 'so that its motion has only d translational degrees of freedom) We also
ansume that each of the obstacles is a convex polyhedron which moves (without
rotating) at a fixed and known velocity (which may vary from one obstacle to
another) Finally, we assume the obstacles never colh'ide with each other The
free conflgu-a,•ito space n" (uncluding tLim, as an extra degree of freedom, as
above) is (d + ')-dimensional. While the case i - is easy to solve, the caces
d = 2,3 of the asteroid avoidance problem. are qute challenging, and require
some interesting algorithmic techniques.

We have efficient algorithms for various asteroid avoidance problems
These results utilize some basic facts described in the next two subsections, of

which the most important is that normal movement suft:ce.

-3.1 Reduction to the Movement of a Point
Before continuing, we use the following simple device (see [Lozano-Perez

and Wesley, 79]) to reduce the problem to the case in which B is a single mov-
ing point Let Bc denote the set of points occupied by B at time t = 0
Replace each movintig obstacle C by the set C - Bc ',which consists of pointwise
differences of points of C and points of B0 )" Suppose that we wish to plan an
admissible motion of B from the initial position B c to a final position B 1, and
let X, denote the relative displacement of B1 from B 0 Then such a motion
exists if and only if there exists an admissible motion of a single point from the
origin to X, which avoids collision with the moving displaced bodies C - B0
(each such body moving with the same velocity as the obstacle body C) Since
the displaced bodies are also convex polyhedra we have reduced the problem to



a similar one in which B can be assumed Lo he a single movil'g point.
Hereaftar in this section, we assume this.

3.2 Normal Movementsa
We will require some special notation for various types of movement of B

over a given time interval, In all the following types of movement of B, we
allow (the point) B to touch an obstacle boundary, but do not allow it to move
to the interik-r of any obstacle, and require that B not exceed a maximum velo-
city modulus v.-
(I) A static mnovemenit is one in which B does not move (i e., has 0 velocity)

(2) A 1ie movem~ent is a movement of B with a constant velucity vectuý
(with modulus 25 v). During a direct movement, B may touch an obstacie
only at the endpoints of that movement.

(3) A conitact movementr is a movement of B in which B moves on the but'n-
dary of an obstacle C (i.e., the boundary of the region of FP induced by
the movement ol C). In the 2-D asteroid avoidance problem, we alsco

require that any such ýmaximal) contact movement begin and end at (con-
tact with) vertices of an obstacle. In tne 3-D asteroid avoidance problemn,I
we require that each contact movement begin and end only at (contact
with) edges or vertices of an obstacle.

()A fitndameritai mnovementt cf B is a direct movement followed posszibly by
a contafct movement.

(5) A normal mrovernent of B is a (possibly emnpty) sequence of fundamental
movements of B where the mouvements must satisfy the following restric-I
tions:

RI: Eletween any two distirnct direct movements, there must be a contact move-
ment, and

R2 . No two distinct (maximal) contact moverrents are allowed to' VISLt (theI

boundary Of) the same obstacle.
Note that R'I requires that a nori-al movement does hot cliange its di.rec-

Lioni exrepLi while in conitact with an obstacle R2 ensures that anormal mnove-
ment. consists of -- k + I fundamental movements, where k is the number of
obstacles

LEMMA 3. 1. B has a collision.-free mrIovemen~t p(t) = "-',t IfroIn 'XC,0] to AXT. T]
iff B has a sequence of fundamental moverivents frorn. 'X0,0] to LEXT, SU saify
irng R I.
Proof. If B has a sequence of fundamental movemrents from _X0 0] to 'X,,.T]
where B may possibly t~ouch s me of the obstacles, then since the obstaclesz
are assumed never to collidie, and 'the initial and C11nal DositionS Of B are free, it,
i~s easily seen that by a pert urb@.ticn of the gtiven seq~uence of miovements, one
can obtain a collisioa-free ii-ovement. from [X0,0] to 'X7.T].

For the converse part, consider the class K of ail paths p'kt) XA~.t ] in
space-time froCm rX0,,o to [XT~, N', whose slope at any given tim e is of modulus it
most v, and which avo ds penetrLAtion into the interior of any obstacle Hyv
assumption K is not empity Let no C K be the shortest. '.>ah in K (where the
length of a path in K is ats Euclideani length miE")

Observe that if it n K and if -rX1,t], KX' 2,t 2l E -fr- then thc path 7T', obtarted
by replacing the portion of ir between these two points by the straight segment
joining them (in space-timne), is such that it~s slope at any given time is tS v
Since the space-time trajectory of each obstacle is a convex polyhedron, it fol-
lows. using standard shorti-st-patli arguments, tha Fr0 must be a polygorial path,



wiiirh consis-s of &n l~ernating se~z~ucrnce f~ ree straight segments and of polyg-
onal subpaths in wh-ich B *i ini Lonia,*'t :i ~ obstacle Moreover. the vertices
of r% must lie along cdge., of Cio~s~i-i. ..rajectories of the moving obstacles,
s-) they correspond to consdcts cf R 'v-Ah obstacle vertices Thuis ITC is a
sLequelice c fund-.mental niove.,,crvas ý_tv,;fyiing RI. C3
Lo-mma 3".2. B has a coll don-free ao-vemetnt from. "XC,O] to 'XT, T] iff B has a
no-mat mriovemrien'tfrm-i VC. 0-1 'QXT,T]

Proof. By Lemma 3.1, we can assume B :ias a nuovemient IXj.t] defined for
o -. ! s T. cconsisting of a sequenice of fundamental movements beginning at
timnes 0:!! t1 J,t2 . . t,, -e T s. J.i:s`ying Ri. !f -estniction R.2 is violated then
there muA~ be times t.. tj such rXi,t ] is in contact with the same obstacle C,
dairing turnes t,~ ana tj . But since C is Conveýx, its trajectory C* in spate-time
is also convex. it is then easy to construct a single contact path 1Xt',t] along CO
!nr ti !5 t !C t). Such that Xt I. = 4, and X, . ,V and such that the slope of this
'pa h a, : ny giVeri time is Of MOdulus !& v.- Repeating this process as required. we
get a no:,-nal'incvement satistiying both Rl and H.2.

The other direction follows fromr Lemmua 3I Ic r

I'i Te Asteroid Avoidance Problem w*iLh One Degree of Freedom c! Movement
We w[I first consider nhe case of a ---D astetio'd avoidance problem. where

we' assýume B is con~strained to move along a fixed line (in Lt. presence 01 2-D
convex polygonal olhstac~les which can pass through that line) The problem is
not difficult in this case sinre Vl has only one degree of freedom movemenc
"(Nevertheless, a brief investigation of this case will aid the reader to under Lanid
better. th~e techniques which we use for the more diffLcult cases of d 2.31
degrees of frepecýom.) Let ni Ie the total number of obstacle edges Let k be
the number of obstacles. By the reduction of Section 3.1, we can as-sume B3 is a
single pcint.

THMOREM 3.1. Th'-e ast'qrom~! aoi~dance problem c'an be sobved -in time O'ri lcg n)
4f 8 is constrained to move ,nlty along a i-dimnensional line L.
Proof. The key observation is that the (Spý'Ce-nime) confi-kuration space PP i n

iscase. is a 2-dimensional space bounded by polygonal barriers genecrated by
the umiforn' motions along L. of the inters:ýctions of obstacle edges with L We
explicitiy constrii(t PP using a scarj-line technique. Ve thrst s:;rt in trnl-
CO'7. ',-,g i-) a' 6LLc eriges andl vertices in the order of tim~e- u, which they
first intersc.ý. L. Let th2ý sorte-I sequence be t.,.. ... t, (where m = 0,n), As
we sweep the s-ari lire across timp-, we mamntain for each t1ime t the scet FP, oif
al~l accessible L':.ýe confiurations at time 1. and als-o a sorted li-st Q of the irter-
sections of obstacle edges with L at tirre t SupDpose is the intLial
configuration of B. Initially P7P 0 consis.s of the -'ingle p,.int. 'Xc,0] in, spacc.
"time, and the initial value of Q is easily calculated in tini-, O1n log P.) Induc -
tively, suppose for for some t, ý- 0 we have constructed fPg,. We re'presc~rnit
FrP, as an ordered, finite sequence of disjoint intervals 11 -...... 's of L. w h o s

union is the set of all T)oints X such that there is a c-ollision-free ofcmiit~
B. whose velocity modkulus never exceeds v. from Xn 0 to X,t,' Let t,,b
the next time following t, that an obstacle vertex intersects L FP,,,, can
easily be constructed !romn FPg, by observing that (i1) the boun'daries of L-ýcch
of the in~tervals I, expand with velocity v, and ',2) an obstacle deletes any por-
tion of an interval IJ that it intersects on the line L. inoreover, this iritersection
is itself an interval (since the object is convex) whose endpoirnts move with cork-
stant velocities for t in the interval Li ,ti, j)



From (2) it - follows that the tc~al number of intervals ever inwerted by thie
algorithm into L is at most 2k -,. 0(n). Each step in the curnstruction. of Fg~
from FP8, can thus create a new interval in I.. chr-e the velocilty of an. end-
point of such an interval aireziay in L, and optionally also mnerge pairs of such
-%dicent Lntervals into single intervals. But the overall number of such merges
cannot exceed the nurnbel, of in~tervals ever inserted into L, i.e. is at most 0(n).
Ihe total time of the algorithm is therefor'e &(n log n) 0

3.4 A Polynomial Time Mgorithmu fer the 2-D Asteroid Avoidance Problem for a
Bounded Number of Obstacles

la this subsection, we consider the 2-D asteroid avoidance problem. The
configurationi spane FP in- this cas:e is 3-dimensional. We can assumne, t~y the
reduction of Section 3.1, that B is a single point. We wish to move B from
,X0O0] to jXr,T). The obsta-cles C 1 ,.. Ct are k conivex polygons. Let n,
the size of the problem. be the total number of vertices and edges of the obsta-
cles. Wc will show that if k is a constant, then we can solve the problem in.
ynO(i) time.

Our basic tpch~lique will be tc. first consider the problem of computing the
time intervals in which sinigle direct, ani contact mo,7ements can be made, and
then use a recursive method to determine the time intervals in which it is possi-
ble to do) normal movements.

For technical reasons, we consider the initial and final positions of B to be
additional immobile "obstacles"' Cc, X 0 . Ct* 1 = X7,, each consisting of a single
vertex. Let V(Cj) be the set of vertices of obstacle C. for i., k and

let V(Ce) = Vol and V(Ck +41) = JXT I. Let V u 0 VC,) be thle set of all ver-
tices. Note that for vach j=0, ,k+!- all vertices a E V(Cj) undergo a
translational motion with. the oarne fixed velocity vector.

WNe will use I to denote the get of times a certain event will occur. Let 11
denote. the nintriturni number of disjoint intervals int~o which the points of I Can
be partitioned. Clearly. I can be written using 0'. 1 ) inequalities We will
st'2t-r the intervals of I in sorted order using a balanced binlary tree of size

I '1). in which we cail do insertions and deletions in time O'\log V ).

For ea::I± a. a' c V(,7j). let ~M *)bra the set of all timies V -- 0 for which
Vecrtex a' cari be reached at time L' by a contact movement of 13 on the
boundary of (j starting at vertex a at some time I c I.

be.ýumxi 3-5. ~.Z can e u compined in i1771e Q_ j i-+ VýC,C) anci furtner-

'Proof. There are fixed reals 0 s Al -; A2 'os'iiilit)sc htvre
can be rcacichd trern '.crtux a by a c-oritact. iovement within mittimuiru dclav A,
adf6 inaXiMUIrI d~elay A2 ]These delay pdranieters AI1 \2 ccan be easily corrilputcd
',bv comou~tinp the, suni of dice dciay bcunds roqUired for ncir-conitact. movenicntL
of cach )f the edgeý of Cj ironi a to a') in tim~e 0( V'.Gj)) Then

CMUAi t tA I + t :9 A; ' + t . t i

s~ M~.11) 1, and cali bc! ctiniputcd withina tiroc I(1 + iV( 6,)

For each a,a' c V, leL l)M,~.(1I) b.e the set ri all tirne: t" ý- 0 such that ver-
a'can be reachsd at tUriie V by a sing;! direcut nit.'vaenrwnt of 13 startiri~i at

v-0t-ex u- ~ srine time t c: I
TO ca~c iatte D' 1 ~ 11), we consider the following suuprobleiii- I'ird the ý,;2i.

C of .a)l 0irse tirrw-i 1,t such that t~he pos'tt on a*!i ) of a' at t~imre "cý'n be
reachicd ý,rorji thev posfitin L~r r a) t~imel 1 yI



r7ix a time t and let A't) denote the set of all times t' such that the slope of
the motion from :a t).t ] to 'a 'It),t] has modulus tg v. Plainly A It) is a closed
interval 'Ftj,r~. Consider the triangle A whose corners are vw = 'a~t),tj

w, ra(t),t].w,2 ra'It2),t21 For each obstacle C's. its space-timc trajectory
,*intersects A at a convex set A, The two tangents from w) to Aj cut an initerval

Aj',t) off th~e segment wlv;2. Aj~t) is exactly the set of positions ýa'lt').t] of &'
which are not reachable from 'at),t} by a single di~rect movement, due to the
interference of 1-iLet !j,~t) denote the projEction of A,(t) onto the t-axis 'The
set '%,- is then

Suppose F,,, has been calculated I hen

It' : Bt c 1l, (t,t) E: F,,.,

To caiculata the two-dimensional set F,., we can use a standard technique of
Reahing a iine t = const across the (,tCt)-plane Note that for each t and 4.

eahýniipoint of li~t) is determined by a specific vertex of C-, and that, given
such a vertex: v the corresponding erndpouat e,,dt) of 1j(t) is an algebraic fun~c-
tion in t o~f constant. dogr~e. Hence Cie structure of F,, nit = con~st can
change during the --weeping only at points t where- two functions e,(f), e1,,',)
overlap, or whero one ý,lih function has a vertical tangen;t, i.e. at O(n') point., aLc
most This reirfilly implies

Lemma .3A .... can be catculatedi -n ttna2e 0,'Oiog n), and stored in 0(vi2)
spacf' Furth~r-rnore, for each 1, ýDM,.,iI), + n!i-r2)k, andi DMf,,.(I) can be
catcw'ated in time (j1 + r2A

Proof: The first part follows by the. sweeping techra.qiie men~tior.Ld above. FI.e
second part follows from the &tthat, as a resi.ll of the swe-3pinz, the t-ax>.. i
split into 0~n2) intervalzs. over each one of which the combinatorial structure of

F. emains constaint. an(' consists of a' most k + I disjoint intervals. He.Ace,
mcrgin:; these intervals with the intervals of I, we can calculate DM'U, V) in a
straight forward marine, within the asserted time bound, anid also o'btain the
require I bound on th,ý ccnplexity of that set. C)

THiEORUM 3.2. 7k'e ast'~ro7.d avoidance problemr cu te s:)ed in time
0/,n1k` 2 )k) ani hr-,ce in time noMi in the case of k =0(1) obstacles.
Proof. lniUi~lly iCt Igo) i t .0 ! t -_ Tj and let 1,,C) = for each a C v - JC

lndu'ýtivelv for come i 2t 0, supprose for each a E v. 1"') is the set of times t
thatverex isreahabe fom Xc.uj] by a 'collisiortfree) movemnent ofB

consist.n5 o' -ý' i. fundamental movements Then for each a' E V,

QV

is the set r, times that vertex a' is reaLchable from _Xc,O] by a movement of B
consistinc of -_ i fundamental miovements followed by a direct movement
Hence if ;ý-C V(C,) then

aI ~ (j)

is 'the s,. of timefs that vertex az* is reachable from 'XL;.] by a movement of
.q c'lnliting of !r i+: fundamental movements Thus for each a E: V. 1 4k" is

the set of times vertex a is reachable by a normal movement of B from
.Xc.i)] By Lemma .3 2 such a normal movement suffices So T E- 11i iff there
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exists a collision-free movement of B from -Xc.O] to IXT.T].

Lemmas 3 3 and 3.4 imnply !5': O'n 2i+2k) and so the i-th step takes
time 0O(n 2 Ini '4 2k s-k log(n","k))). Therefore, the total time is O(rik+2)k). C]

3.5. A Decision Algorithm for the 3-D) Asteroid Avoidance Problem with an
Unbounded Number of Obstacles

We next consider the 3-D asteroid avoidance problem. The configuration
space FP is in this case 4--dimensional. By the results of Section 3.1, we can
assume we wish to move a point B from .Xc.O] to 'XT.T]. avoiding k convex
polyhedral obstacles C1. . . . Ct. in this case the sipe n of the problem is the
total number of edges of the polyhedra. We will show that the problem is decid-
a b1.e

Recall that each contact movement is required to begin and end at an obs-
tacle edge or. vertex. We will consider cach obstacle edge e = 'u.,v) to be
directed from u to v.- If e has length L. we will for 0 !9 y .- let e (y) denote
tne point on e at distance y L from vertex u, so e (0) = u and e (1) =v.
Let E = le1. . ... ,e~J be the set of all obstacle ed:ges. Let EV-,j) CE be the set
of (directed) edges of obstacle C'1 for i = 1, . . . k.-

For technical reasons we again consider the inutial and final positions of H
to be immi-obile obstacles Co = Yo and C'k.,-- X7.. We consider EICO) to con-
tain a single edge of length 0 at point Xc and El Ck,i1) to contain a single edge
of length 0 at point XT.

An open formula F(y I.Yr) in the theory of real closed fields consists
of a logical expression containing conjunctions, disjunctions, and negations of
atomic formulas, where each atomic formula is an equality or inequality involv-
ing rational polynomials in the variables Y1..... Yr. A ',partially quantified) for-
mula~ in this theory is iý. formula of the form Q1y 1 - Q,,y, Fly, y,-) where
a :5 r. and where each Q, is an existential or a universal quantifier. Such a for-
mula will be called an algebraic predicate; its d2gree is the maximium degree of
any polynomial within the fcormula, and its size i-s the nuimber of atomic formu-
las it contains. We Will use the following results:
I "Istsa ".r ' Collin-,, 7;]. A ni'-er forrrn-iji of the theory of real closed fields of
size n, con-stant degree. uith r vaniables can be decided in deterministic time

2 ~rn

LEMMA 3.6 ~Be n-Or, Yc~zen, and R~eif. 84). A givenl formula of the the ouij of
-ro,yv Inc R foafc n 9 tiyo v'rv -71ct do'irc' anvvd r va~riables cart be decided vn

nr)space
-'We will first show ',at we can desc-rib, by algebraic, predicates the time

intervals for which fundamental movements can be made, and then use the
existential theory of real closed fields to decide the feasibilit~y of movements
consisting of finite sequences of these fundamental movements. Below we fix

ete. E, C7) and 0• !!', y. y'o Let crL~i,i*V.y'.A) be the predicate which
holds just if B has a contact movement along a single face of C'1 from e,jY) to
e% (y) with delay A (i e the motion takes A 'imne units)
LEMMA 3.7 cmiiy.)can be constructed in, poly'nomial time as an alge-
brai.- predicate o 'f size n90 ) urith constcnt degree and no q1 wxnti~fied variables.

Proof. Let f ace (t,i') be the predica.~e tLat. holds iff e, and e~, ar~e both on
the same face of ýýn obstacele. Let 'uwVJ*",) be the velocity vector of obstacle
C', Let 'u,'vua e distance vector from e,',Y) to e, y) where uu~u
are all linear fuiictons ofy~ B will move in contact with C', with velocity vec-
tor (vv.'L/,v) with modulus
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If B moves from e%,(y) to et.(y') with delay A then we Must have
v~A~w~A UYv~A=WY+ u.. and vA =u,~A + u,.
Solving for vv,v 1 and substituting into v2 2 4 ~ edeietefr

mula 
x+v xw eietefr

_2+ Jjyl+ I ,A2} A face (i~i)

Let dmn(i,i',V.y',t.t) be the predicate which holds just if B has a
(collision-free) direct movement from e,'\y) at time t, to e% (W) at time t.
The following is proved using, arguments similar to those used in Lemina 3.-.
LEMMA 3.8 dim(iJ' ,li'yt,&) can be constructr in polynomnial tim~e as ar
algebrair~ predicate of size a'id degree no"i) with no quantified vazriables.

Proof. For a given set of obstacles C C:JC 1. . . . Ct I let dme~ii',y~y',t t') be
defined as above. except that we allow possible collisions of B with obstacles in

................Ck -C. T.-en rm~iy~t an easily be given ds an algebraic
predicate of size n'2,") bounding the time t' to a single (possibly empty) inter-
v-Al. whose bounds vary algebraically with t.

Inductively we can write dml,-,. r iiy~'tt as the conjunrtion of
* ~dmic, . Ct_11~ ~ tt and an algebraic predicate of size n0"i0, restrict-

ing t' outside a single 'possibly empty) interval of time. Thus
dm~i~iy~y'.t~t') = dm7Lcl c'i~i',y~yt~t') is an algebraic predicate of size

Let frn'i,i',y,y',t~t') hold iff there is a fundamental movement of B
from ejti) at tinme t to e, Qj') at time V. Lemmas 3.7 and 3.E3 imply

LE~MMA V3 9. frm (i..i' y. V. t.) -'n.n. bp. rHiit~.otd in polynoLnrrl7L tiM.P riS 0."

algebraic predIicate of size n011), constant degree and 0(1) quantified iari-
-- ables.

Let m'iA (ii,yy' t .1') be the predi.-ate thatL hclds iff B *has a collision-free
movement from el~y) at timne t to ei.('Y) at time V. Note that the formula
for rn(i,Viy~y',t.t') appears to require 111,n) quantified variables. We now
show
LEMMA 3.10. n(i~i',y~y t,t'U) can be constructed in polynrromial time as an
algebraic prpdicate of size n 00) with constant degree using 0(log n)
quantified variables.

Proof. For each r = 0,1,. *log n, we define mn~(li)~ tt to be predi-
cate that holds iff B has a movement from ei(y) at time t to e,.(y') at time
i' consisting of a sequence of !!r ?f fundamental movem-cnts. Clearly.

inO (,M ,~',~' = fmn~i,i,.Y,yt,t U). We can then define

pi
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However, this definition, when applied recursively yields a formula of size 2'.
A more compact defintion is gotten by

I m V+'I (i '. t ,t') -0 i",y",t" Va.,a2.a3 ,a 4 ,ar,,ae

l•''"at =I Aa2 A: Aa3 = Aa4i = y" Aa =Z t Aa6 --. t" _-

(al="Aa2= AAaa=y"Aa 4 =y'Aao=t",Aa. t')]

The formula mOogn) (it',y,y',t,t') is of size ncri) log n : n°o') and requires
only 0(log n) quantified variables. By Lemmas 3.1 and 3.2 we have
mrL%,i',.y.V'.t.t ) = M,.o°n) (i,,y,yy',,tIt'). 0]
THEOREM 3.3. The 3-0 asteroid avoidance problem can be solved tn time 2,o(1).
or al:errnattvely in space O(In gn)

Proof. We assume immobile obstacle edges e 1 , e 2 such that e1 (O) =X 0 and
e 2(0) = XT. Hence by Lemma 3.10, B has a colhsion-free movement fromSXc,0O] to -Xr,T] iffm(1,2,00,O,T) holds.

Since in(L,?2.OO..T) has nd)( size and 0(log n) variables, we can test
satisfiability of mrI(!,2,0,0.0,T) by Lemma 3.5 in time 2n0(l), or alternatively by
Ler,'ma 3 6 in space n0°1 n). 0

3.6 The 3-D Asteroid Avoidance Problem with Slow Obstacles
Let w,, be the maximum velocity modulus of any obstacle, and let v

denote as above the mWximum velocity modulus of B. The slolD asteroi.d
u•VzLC: U •, %L,, is a restricted 3 D astcroid avoid-..nce problem where we

require ';r • v, and we wish to plan an admissible m, tion of B which will
avoid collision with any of the moving obstacles within a given interval of time.
That is, we do not specify a flnal desired position of B but are only interested in
the ability of B to avoid ,..s,,.o'. .. with slo•mv•y

Let C' be one of the moving obstacles whose velocity is i. Then the space-
.'time volume swept by C is

Co Y+±wt,t]" Y C 0 ,t 0O

where CO is the volume occupied by C at time t = 0 Hence C* is also a con-
vex body. Next define the shadow of C to be

S' s(C) =VX, t] '. V 1 U V 3T ;Ž 0.'X +711, t + T] C ~In other words, s(C) consists of points "X,t] sUch that if we proceed from

I therm at any fixed admissible velocity, we will encounter a point on C*. The
intuition behind this definition is that s(C) contains space-time positions fromwinch it Is Impossible to escape the moving C. using any fixed admissible velo-city The folowing lemma shows that we cannot escape from any of these points
under any choice of varying (butL admissible) velocity:



""6-

LEMMA 3.11. For each Z E s(C), any pa'th starting at Z whose pointwise velo-

city remains bounded by v iUl hit a point in C*.

P:'oof. Suppose the contrary, and let p be such a path whi'ch misses C'.
Without loss of generality we can assume that p is a polygonal path (so that
along each segment of this path the velocity is constant). Consider the first seg-
ment of p connecting a point _Xj~tj] in s(C) to a point 'X,t2] outside s(C),
and suppose that the velocity along this segment is u. In particular

X2= X1 + (t2 -t )u -

Since jX1 ,tI] s s(C), and since u is an admissible velocity, there e' 3ts a time
7- (necessarily larger than t 2 ) such that

W,• = 'Xj + 1-r - t •)uT] C C"

On the other hand, jX2,t 2 l] is not in s(C) :io that, by definition, there exists
another admissible velocity uc so that the straight path Pc going from :X 2 ,t 2 ]
at velocity uo never meets C*. By the same argument used above, there also
exists a time T0 > t1 such that

W2 = [AX1 + ('T - t,)u0 ,'r0 ] c C"

But C' is convex, so that the whole segment connecting W, with W2 must be
contained in C*. This however, is impossible, because this segment intersocts
Pa, a conLrddiutLon which provcs our ciaim. ci

LEMMA 3.12. Let C, and C2 be two distinct moving obstacles with velocity
modulus - v. Then s (CI) ns(C2) =: .

Proof. Suppose the contrary, and let Z = xj,t] be a point in s Cj) n s(C2)
Choose any admissible velocity u, and proceed from Z at velceity u Since
Z belongs to both shadows, it follows that there exist times TI, rT, both larger
than t, such that Z 1 = rX+u('rj-t),ri] c C* and Z2 = _X+v.(T.-t),T2] C C
Without loss of generality assume 1-1 < T2. Then by the proof of Lemma 3 " / we
have Zs C S(C 2 ). But Z, is a point on the moving C1 , which implies that a
point on C1 will eventually meet C2, which contradicts our assiunptLon that
the moving obstacles do not collide. QI

THIEOREM 3.4. If t.., -< "U and the initial position of B is not Ln any shadow,
s (C) then it is always possible for B to avoid collision with the m.oving obsta-
cles. Furthermore, if the obstacles are k polyhedra with a total of n edges,
then the required motion of B can be computed in time (n +k)G(1 ) = nIt).

Proof. Let _Xc,O] be the initial configuration at time tr = 0.

It suffices for B to remain immobile for t ; 0, as long as IX=.t] contacts
no obstacle shadow. Let tU 0 be the first time (if ever) that -Xc,t'] contacts
an obstacle shadow s(C). Let u be the velocity vector of C. During tLnes t,
t' t t9 -, we give B near-contact motion which remains on the external boun-
dary of s(C) using only translation of velocity 'w, in the direction of tL.
Since wmeinuv, the velocity modulus of these movements do roL cxceed V.
Thus we have established the existence of a collision-free movement 'X,t] for
0 ! t & =. Hence B can always avoid collision with any obstacle Since the
shadows of 3-D polyhedral obstacles can be easily computed in polynomial
time, the required collision-free motion car, dso be computed in polynomial
time fl.

4. DYNAMIC MOVEMENT PROBLEMS WITH UNRESIRICTED VELOCITY

Throughout the last two sections we have assumed B had a given velocity
modulus bound. Here we will allow B to ha.,e unrestricted motion, and in



-17-

particular we will impose no velocity bounds.
This case appears still intractable, as we show that the 3-D dynamic move-

ment problem. for the case B is a cylinder with unrestricted motion, Ls NP-
hard. Again this proof requires that h has only 0(1) degrees of freedom and
we make critical use of the presence of rotating obstacles to encode time.

We will next show, in contrast with what has just been stated, that the prob-
lem is polynomial time if all the obstacle motions are algebraic in space-time,
that is the movement of B is constrained )y algebraic inequalities of bounded

degrees (for example B consists of a bounded number of 3-D linked polyhe-
dra), and there is no bouni on the velocity modulus of B.

4.1 The Case of Unrestricted Motions in the Presence of Rotating Obstacles is
NP-hard

We will reduce the 3-satisftability problems to that of planning the motion
of a cylindrical body B in 3-space in the presence of several rotating obsta-
cles. A semidisc is a disc with half its interior removed so that it is bounded by
a semicircle and a line segment. Suppose that we are given an instance of 3-
satisflability involving n Boolean variables z ..... x,,. With each variable z,
we associate several semidiscs Di.t of radius 1, each rotating in some plane
lying parallel to the x-y plane at some height hN.k with its center at some
point w,.k For each i 1..... n, all the semidiscs D,.k rotate with the sameITangular veloci-y V. Thus the first set of semidiscs complete half a revo-

lution in . time unit, the second set in 2 time units, and so forth. Hence, if U
is a sufficiently small disc contained in the interior of the 2-D unit disc near its
perimeter, and if the initial positions of the rotating semidiscs are chosen

appropriately, then after t whole time units each semidisc Di., will cover the
set (,U+u,) x JhikJ if and only if the i-th binary digit of t is 1. We assume
that the cross section of B has an area smaller than that of U

Suppose that the given instance of 3-satisfiability involves p clauses,
where the m-th clause has the form zm, 11zr, Vzm,,•, where each zz is ei.ther

x, or the complement of zx. We represent this clause by three semidiscs

. D t.am D,• 3.D,, all placed on a plane at some height hm (without touching or
intersecting each other), such that their centers all lie on the y axis of this
plane, and such that the empty half of Dm,.,• s placed initially to the right of
the y-ax~s if a= xm;, otherwise the semidisc is placed initially wiLth its empty

1,0, I CA. ~.~.~ A AL3 Z) I L~Lt L LU1:. L I~ UU L I. L I t; U id L IC Uvy L UIL~iitL d11.L; L1)Li

- necting scme point Cm lying between the (m-')-th plane and the m-th plane
"'just introduced, to a point Cm11 lying above the new plane Each tunnel is cir-

cular, and its intersection with the plane is a sufficiently small disc lying within
the right half of the corresponding disc D near its highest (in y) point This
construction implies that at time t the body B that we wish to move can

L quickly go from C,? to C+,, if the assignment of the i-th binary digit of L to
the variable x1, for each . = 1 ..... n, satisfies the m.-th clause. It follows that
we can move 3 from an initial position Cl to a final Cm,, if[ there exists a
tirme t for which the above assignment sat:sfies the given instance of the 3-
satisfilability problem. (It is easy to add more c-otatmng discs tri t. would enforce

K . B to traverse the whole system of tunnels in a very shori. time that begins at an
integral number of time units.) This proves that

TIIEOREKM 4.1. In the presence of rotating obstacles, dy'namic motion planninm9
of a I cdy B with no velocity modulus bound is NP-hard, even i,-. the case uhere

Sthe body B is a rigid cylinder.
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Remark: As in the case of the time-machine construction in Section 2, this
construction can also be simplified to a two-dimensional dynamic movement
planning with a single moving point obstacle, at the cost of using an irregular
and more complex motion of that obstacle

4.2 The Case of Unrestricted Algebraic Motions
Let B be an arbitrary fixed system of moving bodies with a total of ,d

degrees of freedom. Let S be a space bounded by an arbitrary collectLion'of
moving obstacles Let the (space-time) free configuration space FP of B be
defined as in Section I We will assume that the problem is algebraic in the
sense that the geometric constraints on the possible free configurations of B
(kie . the constraints defining FP) can be expressed as algebraic (over the
rationals) equalities and inequalities in the d + i parameters IX,t].

Remark. Some of the motions used in the preceding lower bound proofs
are not algebraic in the above sense. The simplest such rmotion is rotation of a
two-dimensional body about a fixed center. Indeed, suppose for simplicity that
the rotating body is a single point at distance- r from the center of rotation
(which we assume to be the origin). Then th-. curve in space-time traced by the
rutating point is a hclix, parametrized as xz v.t) = (r cos wt,r sin wt,t), which
is certainly not algebraic

To obtain a polynomial-time solution to this problem, we decompose Ed,,

into a cylindrical algebraic decomposition as proposed by Collins 'Collins, 75]
(or Cotlins' decomposition in short; nf. Cooke and Finney, 67] for a basic
description of cell complexes) relative to the set P of polynomials appearing in
the definition of FP. Roughly speaking, this technique partitions E d+ into
finitely many rconnected cells, such that on each of these cells each polynomial
of P has a constant sign (zero, positive, or negative). Thus FP is the union of
a subset of these cells, and it is a simple matter to identify those cells which are
contained in FP (we refer to such cells as free Collins cells) Moreover. by
Uuig i.e . .odifed dC•..composition technique presented in "Schwartz and Sharir,
83b], one can also compute the adjacency relationships betwgen Collins cells
(.e., find pairs cicIX 2] of Collins cells such that one of these cells is contained in
the boundary of the other). Thus any cont:nuous path in FP can be mapped to
the sequence of free Collins cells through which it passes, and conversely, for
any such sequence of free adjacent Collins cells we can construct a continuous
path in FP passing through these cells in order This observation has been
used in [Schwartz and Sharir, 63b] to reduce the continuous (static) motion
planning problem to the discrete problem of searching for an appropriate path
in an associated connectivity graph whose nodes are the free Collins cells, and
whose edges connect pairs of adjacent such cells.

We would like to apply the same ideas to the dynamic problem that we wish
to solve, but we face here the additional problem that we are alowed to consider
only t-monotone paths in FP. To overcome this difficulty, we note that. the Col-
lins decomposition procedure is recursive, proceeding through one dimension at
a time When it comes to decompose the subspace EP, it has diready decom-
posed E' into "base" cells, and the decomposition of 'El" will be such that for
each base cell b of E' there will be constructed several "layered" cells of E'+'
all projecting into b. Hence if we apply the Collins decomposition technique in
such a way that the time axis t is decomposed in the innermost recursive step,
it follows that each final cell c (in E1+1) consists of points Xt] whose t
either lies between two boundary times to(C) < t 1(c) or is constant .Moreover,
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a Ccli:ns cc:l of the first type. then it is easy to show. using induction on
"re .-mension. that for any point 'Xc.to(c)] lying on the "lower" boundary of c.

and for any point "X1 ,tI1 c)] on its "upper" boundary. there exists a continuous
monotone path through c connecting these two points. In fact, the preceding
property also holds if one or both of these points are interior to c.

These observations suggest the following procedure.

1:) Apply the Collins decomposition technique to Ed+1 relative to the set of
polynomials defining FP, so that t is the innermost dimension to be processed
Also find the adjacency relationship between the Collins cells, using the tech-
nique described in 7Schwartz and Sharir, 83b]

(2) Construct a connectivity graph CG, which is a drected graph defined as

follows: The nodes of CG are the free Collins cells. A directed edge 'c,c] con-
nects two free cells c and c' provided that (a) c and c' are adjacent: (b)
either c and c' both project onto the same base segment on the t axis, or c
projects onto an open t segment (tc(c),t1 (c)) and c' projects onto its upper
endpoint t 1(c), or c' projects onto an open t segment (tc'c'),t 1 (c')) and c
projects onto its lower endpoint to(ctag) Intuitively, each edge of CG
represents a cros,.ing between two adjacent cells which is either stationary in
time (crossing in a direct:on orthogonal to t), or else*progresses forward in
time.

(3) Find the cells Cc.Cl containing respoltively the initial and final
configurations [X0 .0]. Xi. 7,]. Then search for -. directed path in CG from cc to
cl. If there exists such a path then there also exists a motion in FP between
the two given coonfigurations (and the lat.ter motion cari be effectively con-
structed from the path in CG), oL-herwise no suuh n-iiLion exists.

To see that thE procedure just described is correct, note first that if p is a
continuous motion through FP between the initial and final configurations
(which we assume to cross between Collins cells only finitely many times). then
it is easily seen that the sequence of free cells through which p passes consti-
tutes a directed path in CG. Conversely. if p' is a directee path in CC
between cc and c , then p can be transformed into a con.ti .. ou .n.tone.)

motion through FP as follows First choose for each free Collins cell, c a
representative interior point 'X ,t,], such that the represei.tative points of all
the cells that project onto the same base segment on the t axis have the sa-ne
t value Then transform each edge "c~c] of p'into a monotone path in FP as
follows If tc = tc. (i.e., if the crossing from c to c' is orthogonal .o the time

axis). then connect X•,.t, I to 'X,- . t, ] by any path which is contain.ed n the
union c u c' and on which t is held constant, the existence of such a path is

,'.guaranteed by the property of Collins cells noted above If t4 < t then con-
nect •Xt ] to X. *t, ] bv a monotone path contained in c u c', aiain the
existence of such a path is guaranteed by the structure of Collins cells The
resulting path p is plainly continuous, is contained in FP and is weakly mono-
tone in t 'Note that the crossings of the first type in which t remains con-
stant represents extreme situations where the velocity of B is infinite. Ho%ý-
ever, since p is continuous and FP is open, one can easily modify p sl,ghtly
so as to make it strictly monotone in time.) This establishes the correctness of
our procedure.

Since the Collins decomposition is of size polynomial in the number of given
polynomials and in their maximal degree ',albeit doubly exponential in the
number of degrees of freedom d), and can be computed withii tinmr of similar
polynomial complexity, It follows that.
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THEOREM 4.2. The dynamic 'unrestricl ea version of the movers problem. for a
fixed moving B can be solved in the general i'cpoace-time) algebraic case in
time polynomial in the number of obstactes, trte numboer of parts of B, and
their maximnal algebraic degree
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Fi 3ir~~.The construction of a torus by the movement
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